Extensible Networking in Reconfigurable Hardware
Invited Talk at Georgia Tech's Center for Experimental Research in Computer Systems
February 20, 2003
John W. Lockwood
Applied Research Laboratory
lockwood@arl.wustl.edu
http://www.arl.wustl.edu/~lockwood/

Fundamental Changes

- **Existing (Old School) Internet Technologies**
 - Shortest hop routing
 - Best effort packet delivery
 - Bit transport service
 - Current Technologies
 - Microprocessors (slow)
 - ASICs (static)
 - Current Problems
 - Network routers have static functionality
 - Packet filtering rules manually deployed into firewalls
 - Services manually deployed into network
 - Network becomes unstable when attacked by Internet worms and DDoS outbreaks

- **Extensible Network (New School) Services**
 - Best path routing
 - Guaranteed Quality of Service
 - Application-Level services
 - New Technologies
 - FPGAs
 - Network Processors
 - New Possibilities
 - Network routers with dynamic feature set
 - Packet filtering rules automatically distributed to packet filtering nodes
 - Services automatically deployed into network
 - Robust for all possible traffic patterns
Configuration of Network Packet Processor

- **Packet processing hardware performs:**
 - Packet classification
 - Packet forwarding
 - Address Translation
 - Data modification
 - Packet buffering
 - Active Networking (Application-level data processing)

Configuration of Internet Router

- **Additionally, Router interface performs:**
 - Internet route lookup
 - Traffic policing and shaping
Practical Platform for Extensible Hardware

- Suitable platform for shared development
 - Open platform

- Well-defined hardware interface
 - Suitable for System-on-Chip (SOC) Implementation

- Complete design methodology
 - Automatic flow from design to implementation

- Physical Implementation tools
 - Allow synthesis, place, and route with existing tools

- System management tools
 - Link static and dynamic functionality

Field Programmable Port Extender (FPX)

- **RAD**
 - Large Xilinx FPGA
 - Attaches to SRAM and SDRAM
 - Reprogrammable over network
 - Provides two user-defined Module Interfaces

- **NID**
 - Provides Utopia Interfaces between switch & line card
 - Forwards cells to RAD
 - Programs RAD

![Diagram of RAD and NID connections](image-url)
Port Processing at edge of Gigabit Switch

- **Original Network Switch**
 - Line card connects to Gigabit switch backplane

- **FPX-Enhanced Router**
 - Line card connects to Gigabit switch backplane

Photograph of the FPX
Stacked FPX / SPC / Line card

Washington University Gigabit Switch with FPX Devices
Switch, FPGA, & Processor Configuration

Applications for Extensible Networks:

Network Security
Dynamic Hardware Plugin contains:

- **Processing Module**
 - Processes Data passing through the module

- **Protocol Wrappers**
 - Segment and reassemble Internet packets
 - Compute packet headers, lengths, and checksums
 - Provide reliable stream of data to processing module

- **Interfaces**
 - Read and write packets to network
 - Buffer data in off-ship SRAM and SDRAM

Content-Aware Firewall on a Chip

- Layered Protocol Wrappers
 - Off-Chip Synchronous Random Access Memory (SDRAM)
 - Off-Chip Static Random Access Memory (SRAM)

- Identify packets based on content-based match (regex)
- SDRAM Controller
 - SDRAM Free List Manager
 - SDRAM Controller
 - SDRAM Free pointers
 - SRAM Controller
 - SRAM Free pointers
- CAM-based Firewall
 - Match vector
 - Flow from CAM
- Flow Buffer
 - Head Pointers
 - Tail Pointers
- Scheduler (RR, DRR, 3DQ)

(Implemented on the RAD on the FPX, using a VirtexE 2000 FPGA)
SPAM, Work, and Personal Phrase Lists

- **General Spam (Bit 0)**
 - “amazing”
 - “CALL NOW”
 - “Limited Time Offer”
- **Save Money SPAM (Bit 1)**
 - “Consolidate”
 - “full refund”
- **Fast Money SPAM (Bit 2)**
 - “MAKE MONEY FAST”
 - “Work from home”
- **Chains and Forwards (Bit 3)**
 - “Read this”
 - “FWD”
- **Jokes (Bit 4)**
 - “Joke”
 - “walks into bar”
- **Work List (Bit 5)**
 - “Homework”
 - “Machine problem”
 - “CS536”
 - “Lockwood”
 - “Washington University”
- **Personal List (Bit 6)**
 - “Mom”
 - “Dad”
 - “Call Home”
- **Urgent (Bit 7)**
 - “Urgent”
 - “Emergency”

Note: Underscored letters are case-insensitive

Content Matching Module

```
regex_app (given)
```

- `dataen_out_appl` → `dataen_appl_in`
- `d_out_appl` → `d_appl_in`
- `sof_out_appl` → `sof_appl_in`
- `eof_out_appl` → `eof_appl_in`
- `sod_out_appl` → `sod_appl_in`
- `tca_out_appl` → `tca_appl_in`

Inputs:
- `clk`
- `reset_l`
- `enable_l`

Outputs:
- `Matcher`
- `ready_l`

From Protocol Wrappers

To existing MP1 circuit

To extended Bits of CAM

`wrapper_module.vhd`
Content Match Vector

- Bit is set (1) if any phrase in a category is found anywhere in payload
- Bit is clear (0) if none of the phrases in the category appear in the payload

Sample Content Match Vector

- “Consolidate your loans. CALL NOW”
Packet matching w/ Content Addressable Memory

- Sample Packet:
 - Source Address = 128.252.5.5 *(dotted.decimal)*
 - Destination Address = 141.142.2.2 *(dotted.decimal)*
 - Source Port = 4096 *(decimal)*
 - Destination Port = 80 *(decimal)*
 - Protocol = TCP (6)
 - Payload = “Consolidate your loans. CALL NOW”
 - Payload Lists = { General SPAM (0), Save Money SPAM (1) }
 - Content Vector = “00000011” *(binary)* = x”03” *(hex)*

<table>
<thead>
<tr>
<th>Content</th>
<th>Src IP (hex) =</th>
<th>Dest IP (hex) =</th>
<th>Src Port =</th>
<th>Dest Port =</th>
<th>Proto =</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>80FC0505</td>
<td>8DBE0202</td>
<td>1000</td>
<td>0050</td>
<td>06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
<th>Mask:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = care</td>
<td>0 = don’t care</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IP Packet</th>
</tr>
</thead>
<tbody>
<tr>
<td>DROP the packet: It matches the filter</td>
</tr>
</tbody>
</table>
Basic Packet Classification Hardware

- CAM MASK 1
 - CAM VALUE 1
 - CAM VALUE 2
 - CAM MASK 2

![Diagram of packet classification hardware](image)

match <= '1' when (input = 0xFFFFFFFFFFFFFFFFFFFFFFF)
else '0';

Quality of Service

- **Gives some flows better service than others**
 - Zero-sum game:
 - The amount of bandwidth on a link is fixed.
 - Design the system to maximize reward
 - Not all Internet users are created equal.
 - Will users pay for something that is not well defined?
 - Some flows get worse service!

- **Applications**
 - Determine which flows to drop under heavy load
 - Try to provide virtual link with end-to-end guarantee on bandwidth and delay
Data Queuing Outline

- **Types of Queuing**
 - Class-based
 - Priority-based Service Disciplines
 - Differentiated Services
 - Per-Flow
 - Fluid Fair Queuing / Weighted Fair Queuing
 - Constant-Time Queue Service Disciplines

- **Hardware Implementation of Flow Queues**
 - Running time limitations in Gigabit networks

Queue Management

- **Flow State**
 - Head Pointer
 - Packet Reads = 0
 - Packet Writes = 3
 - Tail Pointer

- **F_i**
 - Other Flow State
 - Head Pointer

- **M[x]**
 - Reserved Empty Slot [implementation dependant]

- **M[y]**
 - Head Pointer

- **M[z]**
 - Tail Pointer

- **M[u]**
 - Empty Slot

- **M[v]**

Note that packets can be stored anywhere in memory.
The 3DQ Scheduler for MP3 combines priority-based scheduling with flow-based scheduling

- Supports four priority levels
 - Each implemented as a CoreGen FIFO that stores Flow IDs

- Supports per-flow queuing
 - Backlogged flows are serviced in a round-robin manner
Extensible Interface to Flow Buffer

--- Interface with the Queue Context

--- From the Queue Manager
Tail: in std_logic_vector(31 downto 0);
TailValid: in std_logic;

--- To the Queue Manager
NextTail: out std_logic_vector(31 downto 0);
NextTailValid: out std_logic;

--- From the Queue Manager
Head: in std_logic_vector(31 downto 0);
HeadValid: in std_logic;

--- To the Queue Manager
NextRead: out std_logic_vector(31 downto 0);
NextReadValid: out std_logic;

Content-Aware Firewall on a Chip

(Implemented on the RAD on the FPX, using a VirtexE 2000 FPGA)
DHP Design Flow

- **Synthesize Logic** (Synplicity Pro)
- **Constrain Placement to modular Regions (DHP)**
- **Functional Verification (ModelSim)**
- **Place and Route with constraints (Intel)**
- **Set Boundary I/O & Routing Constraints (DHP)**
- **In-System, At-Speed Testing (FPX Platform)**
- **Install Module and Generate Traffic (NCHARGE)**
- **Relocate Modular Logic within bitstream (PARBIT)**
- **Verify Post Place & Route Timing (ModelSim)**
- **Generate bitstream (Intel)**

Packet Processing Waveform

- TTL
- Src IP
- Dest IP

506 ns to 706 ns
Synthesizing the Design (Synplicity)

Listing of the synthesizable vhdl files in the design. The files are listed in bottom-up order.

Target FPGA
Xilinx Virtex-E XCV2000E -7 FG680

DHP Implementation on the FPX

- Programming Module onto the Reprogrammable Application Device (RAD)
 - Circuit on XCV2000E
 - SRAM and SDRAM Interfaces
 - Control Cell Processor
 - Holds 2+ DHP Modules
 - Reprogrammable over network
Floorplannings - INFRA

DHP RESERVED AREAS

NCHARGE Homepage

- Web interface to communicate with the FPX

- Menu Functions
 - Route traffic flows
 - Reprogram hardware
 - Upload bitfiles
 - Read & write on-chip Memory
 - Create test cells
GUI to Install New Hardware Module

- Allows uploading and downloading of full or partial bitfiles
- Allows user to select a bitfile for programming
- FPGA reconfigures when user presses ‘Execute Command’

Hardware Plugin Service Model

- Traffic Source
- Service Interface
- Data Flow 1 (with QoS specifications)
- MultiService Router, R1
- Service Interfaces
- Plugin
- Reconfigurable hardware module
- Software module
- Plugin Server
- Backpressure/flow control
- Data Flow 2 (with QoS specifications)
- MultiService Router, R2
- Service Interfaces
- Plugin
- Reconfigurable hardware or software module
- Backpressure/Flow control
- Data Flow 3 (with QoS specifications)
- Service Interface
- Destination
Example: Secure, Reliable, Video Distribution

![Diagram of secure, reliable video distribution]

Reprogramming the FPX

1. **New Module is created**
2. The full or partial bitstream is sent over network to the NID on the FPX and stored in the configuration cache
3. A Command Issued to reconfigure hardware
4. NID Reads Memory and reprograms RAD via SelectMAP

Washington University in St. Louis
Simultaneous Programming Within a Switch

Interfacing with Computers & Internet
FPX Platform platform developed

FPX combined with WUGS to route and process Internet packets

Other Modules Implemented

- IPv6 Tunneling Module
 - Tunnels IPv6 over IPv4

- Statistics Module
 - Event counter

- Traffic Generator
 - Per-flow mixing

- Video Recorder
 - Motion JPEG

- Embedded Processor
 - KCPSM

- IPv4 CAM Filter
 - 104 Bit header matching

- Fast IP Lookup (FIPL)
 - Longest Prefix Match
 - MAE-West at 10M pkts/second

- Packet Content Scanner
 - Reg. Expression Search

- Data Queueing
 - Per-flow queue in SDRAM
Summary

- **Extensible Network Technology**
 - Provides high degree of configurability
 - Provides high performance

- **Field Programmable Port Extender (FPX) Platform**
 - Well-defined Application Programming Interface
 - Web interface simplifies FPX control and configuration
 - 85 FPX devices built
 - Over 30 Hardware applications developed & tested on FPX

- **Applications**
 - Internet Protocol (IP) Protocol Processing
 - Network Security (Firewall)
 - Quality of Service (Flow Scheduler)
 - Multi-video processing Platform
 - Your modules!

FPX used for Hands-on Tutorials

Gigabit Kits workshops with FPX Tutorials held 1/01, 8/01, 1/02, & 6/02

Participants Programmed FPX Modules in the CAD Laboratory

Then tested modules in lab

Acknowledgements

- Washington University
 - Applied Research Lab
 - Faculty
 - John Lockwood
 - Jon Turner
 - Graduate Students
 - David Taylor
 - Todd Sproull
 - Sarang Dharmapurikar
 - David Lim
 - James Moscola
 - David Schuehler
 - Chris Neely
 - Chris Zuver
 - Haoyu Song
 - Henry Fu (Now at Stanford)
 - Bharath Madhusudan
 - Undergraduate Students
 - Harvey Ku (at CMU)
 - Elliot Sinclair
 - Mike Attig
 - Doug Stirrut
 - Tucker Evans (Now at General Dynamics)
 - Mike Wrighton (Now at CalTech)
 - Industry Research Partners
 - David Parlour (Xilinx)
 - Matthew Kulig (Global Velocity)
- University Research Partners
 - Prabhu Kuttyiam (University of Kentucky)
 - Ken Calvert (University of Kentucky)
 - Matt Sanders (Georgia Tech)
 - Ron Srodawa (Oakland University)
 - Haiyan Qiao (NDSU)
 - William Perrizo (NDSU)
 - Kuo-Tung Kuo (University of Maryland)
 - Cary Colwell (Naval Postgraduate School)
 - John Gibson (Naval Postgraduate School)
 - Hualyu Liu (University of Texas at Austin)
 - Qing Tan (University of Toledo)
 - Sachin Shetty (University of Toledo)
 - Rajanikanth Batchu (Mississippi State)
 - Ravi Sankar (USF)
 - Simon Wong (UCLA)
 - Sven Shepstone (University of Cape Town, South Africa)
- Visiting Faculty and Students
 - Edson Horta (Univ. de Sao Paulo, Brasil)
 - Florian Braun (University of Stuttgart)
 - Carlos Macian (University of Stuttgart)